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The scale equation method is applied to the investigation of the critical 
dynamics of systems described by Ginzburg-Landau functionals of the 
most general form. The method does not require renormalizability of the 
Ginzburg-Landau functional and does not make use of the scaling invariance 
hypothesis. 
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1. I N T R O D U C T I O N  

The renormalization group (RG) method made it possible, at least in 
principle, to solve the phase transition problem. This method allowed one 
not only to understand the physics of the phenomena occurring in the 
critical region and to predict quite a number of new effects, but also to 
calculate critical asymptotics with an exceptionally high accuracy. (1 5) Both 
approaches using the perturbation theory in the ~04 model (13) and 
approaches based on other approximation schemes (4'5) for the investigation 
of the exact RG equations proposed by Wilson (6) appeared to be rather 
effective. 

We have developed (v) a new approach to investigate the critical state 
thermodynamics. This approach is based on the investigation of the exact 
equations for the correlation functions, which were called the scale equa- 
tions (SE) (this term is determined by the method of the derivation of the 
SE and is not in any way connected with the scale invariance hypothesis). 
The SE technique is applicable to the investigation of systems of the most 

X Donetsk Physico-Technical Institute of the Ukrainian Academy of Sciences, 340114 
Donetsk, USSR. 

295 

0022-4715/90/0100-0295806,00/0 �9 1990 Plenum Publishing Corporation 

822/58/1 2~20 



296 Ivanchenko e t  al. 

general form described by Ginzburg-Landau functionals containing anhar- 
monics of all orders (i.e., this method does not require the Ginzburg- 
Landau functional to be renormalizable, as opposed to the field theory 
approach to the phase transition problem(8)). Moreover, this method does 
not use the hypothesis on the scale invariance which is the basic hypothesis 
of the Wilson theory. Nevertheless, the SE method is closely connected 
with the RG approach; the exact RG equations in the form close to the 
initial formulation by Wilson follow from the SE (in this case the proce- 
dure of the derivation of the RG equations in the new approach appears 
to be very simple). The use of the SE makes it possible to solve some 
mathematical problems which arise in the conventional approaches (for 
example, the problem of the elimination of the so-called "redundant 
operators"). Finally, using the SE, one can obtain results which the con- 
ventional approach cannot give (e.g., one can obtain the exact momentum 
dependence of the correlation function at the critical point over the whole 
range of the momentum change). 

The present paper is aimed at generalizing the SE method to 
investigate the critical dynamics. It will be shown that using the SE 
method, one can obtain all the results given by the standard approach. 
This method, as in the static case, uses the Ginzburg-Landau functional of 
the most general form with nonlocal vertices. Moreover, in the calculations 
up to the critical exponents one may leave unspecified the relaxation equa- 
tion for the order parameter, i.e., it is possible not to set the explicit form 
of the momentum dependence of the function F(q 2) in the time-dependent 
Ginzburg-Landau model (see refs. 9 and 10). 

Finally, the quantum generalization of the classical Ginzburg-Landau 
functional used in this approach can be derived from the microscopic quan- 
tum Hamiltonian (see, for example, refs. 11-16, and Appendix D, where the 
Ginzburg-Landau functional for the liquid-vapor transition is obtained 
from the Hamiltonian of the interacting Bose gas). In this sense, this 
approach can be regarded as a first-principles one. 

The paper is set on a physically rigorous level and is organized as 
follows. In Section 2 the SE are derived for the arbitrary transformation- 
invariant system whose Ginzburg-Landau functional contains all even 
powers of the vector field. Section 3 presents the method for the elimination 
of the redundant operators generating the determination of the Fisher 
exponent r/. Section 4 is intended to calculate values t/ and F within the e 
expansion and to prove the equivalence of the approach developed here to 
the standard theory for the q~4 model. The solution used here for the RG 
equation fixed point is given in Appendix A. Appendix B deals with the 
additional investigation of the problem of the interconnection between the 
RG equations obtained in various approaches. Appendix C considers the 
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problem of the universality of the obtained critical asymptotics. Finally, 
independent interest exists in deriving, in as compact a form as possible, 
the Ginzburg-Landau quantum functional from the microtheory. This is 
done in Appendix D, where this derivation is performed for a system of 
interacting bosons. 

2. DERIVATION OF THE SCALE EQUATIONS 

Let us start from the Ginzburg-Landau functional of the most general 
form, which possesses all even 2 powers of the n-component vector field ~0. 
We shall also take into consideration the fact that the functional vertices 
may depend both on momenta and on frequencies. Although we shall 
consider the classical system, to make the following calculations it is 
convenient to use the Ginzburg-Landau functional for the quantum 
systems and to pass to the classical limit at the end of the calculations. The 
Ginzburg-Landau functional for the translation-invariant system can be 
written as 

~J~/Eq~] = ~, 21-2k E f g,~l . . . .  2k{qi, coi} 
k = 1 {co/} {qi} 

x (2rt)a6 q, l~ (P (q*,co a 2e (2.1 
t 1 i = 1  

Here fl = I /T  is the inverse temperature, q, are the d-dimensional momenta, 
co, = 2krciT, k = 0, +_ 1, __.2,..., cg are the vector indices, ~q = V-1Sq, and the 
Fourier transformations are determined by the relationship (p(l)= 
5q q)(q)exp(iql). Over the repeating spatial indices (vector indices) an 
integration (summation) is supposed to be performed. 

The integrals over the momenta appearing in the theory should be cut 
off at some momentum A. To avoid the introduction of a cutoff momentum 
into the concrete integrals, one can use the quantum field theory procedure 
of singular function regularization. (17) For  this purpose the full Ginzburg-  
Landau functional can be represented as a sum of functional (2.1) and a 
term quadratic over ~0 

flY~o[q ] = ~  Go~(q, co)[q~(q, co)l 2 

=~ f(q2, co) S - l  --~- 5 I~0(q, co)l 2 (2.2) 

2 The following consideration can be easily generalized to the most general functional also 
containing odd powers of ~0. 
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where f(q2, co) is a smooth function degenerate in the static limit into 
f(q2, 0) = q2 and the monotonic function S(q2/A 2) provides the momentum 
integral cutoff if S(x ~ 0) --* 1 and limx ~ ~ IS(x) x m] = 0 at arbitrary m. It 
should be noted that this procedure can provide both smooth and abrupt 
cutoff. In the latter case S(x)= 0(1 - x ) ,  where O(x) is the stepped function. 

The particular form of the function f(q2, co) is determined by the 
structure of the model under investigation. It can be determined within the 
phenomenological approach when the Ginzburg-Landau functional is sup- 
plemented with a kinetic equation for q~q(t). An alternative approach is 
possible where the function f(q, co) is determined from the microscopic 
Hamiltonian of the system (an example of this calculation is given in 
Appendix D). The following forms are the most widespread: 

f(q, co) = q2 27 COF-- 1A 2 (2.3a) 

f(q, co) = q2 + coA4/Fq2 (2.3b) 

The technique of the following calculations is organized so that the 
particular form of the function f(qZ, co) is nonessential until the point 
where the choice of this particular form is particularly specified. We 
explicitly isolated the dimensional parameter into combinations like co~F, 
having assumed this parameter to coincide with the square of the cutoff 
momentum A. In fact, any functional of the type (2.1) can be obtained on 
the basis of the microscopic Hamiltonian of the system. The natural 
parameter of the momentum integral cutoff is represented by the value 

l/a, where a is the atomic dimension (in the solid state case a is the crys- 
tal lattice constant; or the thermal length as in Appendix D). On the other 
hand, the parameter a makes all functions of momenta in combination 
[qa] ~ 1 dimensionless. Finally, in view of the fact that ~'~ has the dimen- 
sion of energy, the function f(q2, co) can be rewritten in the most general 
form as 

f(q2, co) = AZ(b(q2/A 2, co~F) (2.4) 

It is essential that at the Kadanoff-type transformations the magnitude of 
q (and, consequently, of A, too) is transformed simultaneously with the 
scale changes. 

Let us determine now the mth-order correlation function 

q~ (q,,co,) =(2~) u3 q, 627%,oAm {qi,co,} (2.5) 
i =  i 1 

This function is linearly connected with the Green temperature function Of 
the initial quantum Hamiltonian (see, for example, Appendix D). At the 
end of the calculations one should perform an analytical continuation of 
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the function Am{qi; c~ from the discrete frequencies to the real axis. Then 
this function will determine the physical response function. A,, is a function 
of qi, coi of the cutoff momentum A, and all vertices gk. To derive the SE 
for the f u n c t i o n  ~Z~ m one should find its change at the scale transformations, 
i.e., at the transformations of the qi = tiff, A = Z,~. type. The change in the 
cutoff momentum affects the structure of the integrals involved in the 
definition of the average A~ ... . .  . For  the function Am to preserve its initial 
form, one should also change field variables ~o(q), co)=2-3~q3(~, co). It 
should be noted that the A change does not touch the integrals over co and, 
consequently, mute variables co, on which values ~0 and gk depend, are not 
transformed. 

The choice of A~o is quite arbitrary. Let us use A~ in the simplest form 
Ao=(d+2)/2. This form keeps the functional ~o unchanged in new 
variables (at the corresponding change of F 1). Rather simple transforma- 
tions yield 

6 "z~=~.o(}(~ q~)ftm({qfico/}'A'gk{q~}) 
/ = 1  

i = 1  (2.6) 

where ~k = d +  k ( 2 -  d)/2. Differentiating the relationship (2.6) with respect  
to 2 and setting 2 = 1, one obtains 

m - -~ -  - d -  dV + q / ff-q + A - -  
i= 1 •A 

+ ek+ ~ qi '2k{qi;coi 
k=l {q~} i=1 

x Ak({q,; coi} ,  A, ~{q/2; co/})=0 (2.7) 

The operator - d V  ~/0 V appears when the function A m explicitly depends 
on the volume V. 

Taking into account the explicit form of the functions f(q2, co) [e.g., 
(2.3a) and (2.3b)], one can see that in the general case the operator A ~/OA 
contains two terms. The first term is connected with the explicit 
dependence o f f ( q  2, co) on A 2 and can be rewritten as A~,~co ~?/0co [Ao) = 1/2 
for the case of (2.3a) and Ao~ = 1/4 for (2.3b)], and the second term (it is 
this term that will be denoted by A O/OA) is due to the presence of the 
momentum integral cutoff. For discrete Matsubara frequencies the 
operator co c?/~?co has quite a formal meaning. However, at the end of the 
calculations when the functions (2.5) are analytically extended from the 
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discrete frequencies to the real axis this operator becomes correctly deter- 
mined. 

The critical asymptotics of thermodynamic functions do not depend 
on the value of A; therefore, one can, quite naturally, believe that functions 
Am depend on A only as a parameter. In this case the derivative A ~?/(?A can 
be expressed by some operator depending on other variables. For this pur- 
pose let us find the change in Am at a small variation of A. First it should 
be noted that the averaging over a Gaussian field q) (denoted by ( - . . )o )  
can be replaced with two independent averagings over the Gaussian fields 
q~l and q92 so that q) = ~01 + (192 and the sum of their correlators Gm and Go2 
is equal to the initial field correlator. Let us consider now the change in the 
average of some functional W[q~] over the Gaussian field q) with 
Hamiltonian (2.2). We divide ~0 into a sum q)l + q~2 so as to make the ~0~ 
field correlator equal to 

Gol(q, A ) =  (~o~(q, co) qgl(-q, - c o ) )  = Go(q, co; (1 - 6 ) A )  

Correlator Go2 acquires the form 

Go2(q, co; A)= Go(q, co; A) -  Go(q, co; (1 -6)A ) 

OGo =6 . A ~ -  26 .h(q, co) 

Since ( W)o = ( W)o.12 and the function Go2 is small due to the small value 
of 6, the integration over q)2 is easily performed to yield 

(W)o,A= ((1 +a.s a~ 
where the operator/2 has the form 

62 
/2= T~  fqh(q, co) 

&o(q, co) &o(-q ,  -co) (2.8) 
d 

A j ~  ( W)o = ( s  

Applying relationship (2.8) to the averages over the total Hamiltonian, one 
gets 

A _ _  d 
dA ( W) 

[(/2e ~e 'W)0 -  (W)( /2e-X~l)o]  

(e ae,) 

= T~ fqh(q, co) &p(q, co)6q~(-q, -co) 6cp(q, co)6q~(-q---,-- 

/ aaf, 6W 
+ ( s  fa h(q, co)\6-~,q,-co)bo(-q,-co)) 
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where ( . - - I . . - )  denotes the connected average. Knowing that 

&o(q, co) &o(-q, -co) 

62W (~p(q, co) 
= ( ~q)(q, co) & p ( - q ,  - c o )  ) - G ~  6q)( - q ,  -co)  

and using the relationship (2.7) (after rather simple though tedious calcula- 
tions), one gets the final expression for the desired SE 

i = 1 Ocoi 

j = l  [ ~ j  i ' / 

Here the operator q~ is determined by 

~ 0k[gk{qi, co,}] 6 (2.9) 

= ek+  qi + T ~ (2~)" 
i = l  m , ~ '  q 

co) 6~, ~, {(k + 1)(2 + + 1) 6k+1"~' .... =k(q, q,, {q,, co,}) X 6(q + q') h(q, 

k + l  

2m(k  m + l ~ ~ ...... 2~-~ - - ) S [ g m  (q, ql ..... q2m--I,co, COl ..... CO2m--I) 
m = l  

Y~C2m " " " ~2k t t 1 x gk--m+l (q ,  q2 . . . . . .  q z k ;  o2, co2 .. . . . .  co2k)] (2.10) 

where the operator S performs the symmetrization of the product 
grn X g k - - m + l  with respect to permutation of variables q,, co~ and qj, coj 
(with simultaneous permutation of indices). In relationships (2.8) and (2.9) 
the value 2 is assumed to be equal to A ~, so the momenta are measured 
in units of A and the cutoff parameter is equal to unity. Note that on the 
right-hand side of Eq. (2.8) there is a function .,i m_ 2 which has no momenta 
q/,~ and frequencies coy, t. 
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To conclude this section, it should be mentioned that the SE are 
closely connected with the exact (functional) RG equations. (6) Namely, the 
characteristic system of the operator q~ coincides with the RG equations in 
the differential form 

L { q , ,  = 0kiWi{q,, k =  1, 2 .... (2.11) 

These equations do not contain derivatives with respect to ~oi and, as can 
be directly seen (from Appendix A) they lead to fixed points for vertices gk 
coinciding with the analogous quantities in statics. 

The right-hand side of the system of equations (2.11) contains 
operators 0kiWi] determined by means of Eq. (2.10). Direct substitution of 
functional ~ of (2.1) demonstrates that the system (2.11) is generated by 
the equation 

+ h(q, 6re(q, 6m(-q, 6m(q, 6m(-q, (2.12) 

Equation (2.12) is considerably more compact and allows one to reproduce 
quite easily the equations for all gk. 

3. E L I M I N A T I O N  OF R E D U N D A N T  O P E R A T O R S  

In the investigation of the exact RG equations the "redundant 
operators" problem appears/18) Thus, for instance, the transformation of 
variables ~0-~ cp/~ in the Hamiltonian should not lead to a new critical 
behavior. At the same time this transformation results in a new value of 
fixed points of the RG equations. The SE provide quite new possibilities in 
view of the elimination of redundant operators (since these SE are written 
for the physical functions, but not for the functionals as is the case with the 
RG ones). This is due to the fact that in deriving the SE one can take into 
account not only the invariance of thermodynamic functions with respect 
to the transformation (2.6), but with respect to other possible transforma- 
tions, too. This sharply reduces the class of the SE solutions and eliminates 
the operators associated with the transformations taken into account. Since 
the problem of redundant operators appears already in the static case and 
the result of its solution will be used in the description of dynamics, let us 
consider in the beginning the purely static problem. 
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For the correlation function Am one can write down a more general 
scale equation than (2.6), i.e., 

Am({q . co,}, A, ~,~{q,, co,}) 

= I fI, c(q,2 ) ] dm( { 2q,, co,}, A)., ?~,k { qi2, co,} (3.1) 

where the vertices ~ are connected with the initial relations 

2 gkrKr c(qi')~ Pr~zr{qi} (~ qi 
rKr i 1 

= ~  gkr~crPr~r{qi} (~ qi 
rKr i 1 

{p,~,} is the set of {G} homogeneous polynomials of order of r composed 
of vectors q,. 

The latter procedure is equivalent to the change in the scale dimen- 
sionality of field variables A~. Previously Ae = (d+ 2)/2 was chosen so that 
the functional ~o was unchanged in new variables [so that c(q, 2) was con- 
stant, c = )L(d+2)/2], whereas now A~o = [ d +  2 • r/(q)]/2 [and consequently 
c(q, .,~)= 2 [d+2-n(q)3/2] where t/(q) is quite an arbitrary function. We shall 
make use of this arbitrariness below. Knowing that A~ # (d+  2)/2 and sub- 
stituting the change of functional Ydo at taking account of t/(q) --# 0 to take 
the derivative ~ ,  one can replace an equation of the type (2.12) with the 
more generalized expression 

d V ~ Jt~ 1 1 

~ {[d+ 2 - . ( q )  q)(q) 0 ] &g-d t 
+ 2 + q ~q ~o(q) 6p(q) 

F. + h(q) L&p(q) &p(-q) fie(q) 3 ~ - - - q ) j J  (3.2) 

In the static case the functional ~o at (p2 has a function G~(q) which 
possesses all powers of q starting from the second one. On the other hand, 
the functional ~ /  a t  (/32 also has the function of momentum gl(q). The 
transformation (3.1) allows us to avoid this arbitrariness. For this purpose 
we use Eq. (3.2) to write the equation for the derivative gl(q), 

~,(q) = [2 - r/(q)] g~(q) + D(q)-  G O ~(q) rl(q) (3.3) 

D(q) = Ql(q)-g2mh(q) (3.4) 
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Qk(qi)= (k + l ) fph(p) I ;  gk + l(-- p, P; ql, qi .... ) 

+ k,~gk+l(P, ql; --P, qi;q2, q~ ..... qk, q~) 1 (3.5) 

Here the isotropic model is used, where the vertex g~ depends on 2k 
momenta (ql, q1 ..... qk, q~) and it remains invariant at any permutations of 
variable pairs qi, q~ and qj, qj between each other and within each pair. 
Moreover, the function Qk as well as the vertices gk are proportional to 
a-functions b(ql + ... + q~); therefore the function Ql(q) depends only on 
one momentum. 

Let us choose q(q) so as to get gl(q ~ 0 ) =  0. Thus, if the trial value is 
gl(q # 0 ) =  0, this condition will be also satisfied at each stage of the RG 
transformation, i.e., gl = g~(q = O) = gin. Using Eq. (3.3), one can easily get 
for ~/(q) an explicit expression 

[D(q) - D(0)]  - r/(0) Go l(q) 
(3.6) 

r/(q) = r/(0) + Gol(q)+glo  
where 

1 dZD(q) v=O (3.7) 
,7(o) = 2d dq 2 

The function q(q), as will be shown below, is closely connected with the 
Fisher exponent r/. It should be noted, first, that Eq. (3.2) gives rise to a 
new operator & determined via Ok using Eq. (2.11). Moreover, the function 
r/(q) will be explicitly included in the scale equation for the correlation 
function -~m by means of the combination 52~m~ [d+2--~/(qi)] /2 ,  so that 
the corresponding equation will acquire the form 

{ m d + 2  d _ d V o @  + ~ [ ~l(qi) 0 h ( q i ) l + ~  } 
,=1 2 ~-q*~q~ + 2G~ 

x6  qi m{ql,r>O ~-0 } 
i 1 

= 6(qz + qj) h(qj) 6~,j~,, ~p~,e(q~) 
j ~ l = l  i~j , l  

To clarify the physical meaning of r/(q), it is quite enough to have a 
static scale equation for the two-point correlation function 

1 
6~G(q) = ~ ( ~o~(q) ~oa(-q) ) = A~a(q, - q )  
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In accordance with the scaling hypothesis, the functional ~ reaches its 
stable fixed value at the critical point and, consequently, ~ = Ok = 0. The 
operator g also becomes zero and the equation for G(q) has the form 

I 2 -  ~l(q) + 4qZh(q) S-1(q2) + q ~---ql G(q)= 2h(q) (3.8) 

This equation should be solved at the initial condition G(q ~ ~ ) --* Go(q). 
A direct check shows that the solution of Eq. (3.8) has the form 

= S(q 2) e_~(q2) G(q) - -~ - -  {1 S(q2) Iq2 ~dS-I - d t  [ e  ~ ( ~  - 1 ] - 
) 

(3.9) 

where 

i f  q2 
K(q2, t )=  ~ , ~ ( z ) z  

and taking into account that in the static limit Go(q)=q-2S(q2), so 
h(q 2) = -dS(q2)/dq 2. Being interested in the asymptotic behavior of G(q) at 
q ~ 0, one obtains 

G(q)=q-2+~(~ {exp l-tc(q2)-q(-~) ln q21 

x 1 -  2 d t - ~  (e~(O-1) 

- B(q) q -2+~(~ (3.10) 

where B(q) has a finite limit at q ~ 0. 
In principle, Eq. (3.9) sets the behavior G(q) at the critical point at 

arbitrary values of q if the function r/(q) is calculated (e.g., within the per- 
turbation theory) or is somehow approximated. However, within the scope 
of this paper it is quite sufficient to state that the limit t/(0) of this function 
coincides with the Fisher exponent r/as is evidenced from (3.11). 

Now let us come back to the dynamic problem. In addition to the 
wave vector dependence, Go 1 is also a function of frequency co and the 
value F. Upon renormalization the generation of the vertex gl(q, co) takes 
place, which now depends on q and co. Proceeding as before, one can 
eliminate the dependence of g~ on q. Using the generalized field ~p(q, co) 
transformation with the function q(q, co), one obtains 

gl(q, C0) = [2 - q(q, co)] gl --I- D(q, co) - Gol(q, co) q(q, ~) 
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This obviously yields equations for r/(q, co) similar to (3.6), (3.7) [see also 
Eqs. (4.5)-(4.6) of the following section]. In this case, of course, all func- 
tions on the right-hand sides of these equations [and consequently r/(q, co)] 
depend on co. In view of the correspondence to the static limit, the Fisher 
exponent r/= t/(0, 0) should be determined now by the formula 

1 d2D(q, co) q . . . .  o 
it(O, O) = 2d dq 2 

Finally, note that in the determination of values Q~ [Eq. (3.5)] there 
is the replacement ~p ~ T Z~ o ~p. Due to this, the coincidence of the value 
limo_ot/(q, co) with the static function r/(q) becomes less evident. This 
coincidence will be proved in the next section. For a fixed choice of t/(q, co) 
the dependence of gl on co persists. The only way to compensate this 
dependence is to make the replacement F ~ F ( c o ) .  In other words, F 
becomes a "charge" and is renormalized. This is in agreement with a 
similar result obtained previously. (9'~~ 

4. C A L C U L A T I O N  OF q A N D  g IN THE e EXPANSION.  
I N T E R C O N N E C T I O N  OF V A R I O U S  A P P R O A C H E S  

Equations (2.11) together with definitions (3.5)-(3.7) [taking account 
of the replacements h(q) ~ h(q, co) and ~q --, Zo~ ~q] determine t/(q, co) and 
F(co) formally exactly. In principle, they permit alternatives to obtaining 
the solutions both on the basis of perturbation theory (over small vertices, 
e = 4 -  d, and over inverse component number l /n)  or without it (on other 
grounds). In any case, however, at a certain stage of investigation it will be 
necessary to solve these equations within the approximations of other 
approaches (e.g., e expansion) and compare the results. At this stage it 
is of interest not only to show numerical closeness or coincidence of 
the sought values (Fisher exponent t/, dynamic exponent z, and so on), 
but also to make sure that there is an analytical coincidence of integrals 
in the results or even an interrelation between the RG equations in 
various approaches. This problem will be investigated below and in the 
Appendices. 

The expansion parameter will be represented by the quantity e = 4 -  d 
introduced in the pioneering work by Wilson and Fisher (19) and widely 
used now in the theory of critical phenomena. This parameter was also 
used in fundamental work on fluctuating system dynamics in the conven- 
tional approach. (9'1~176 Within the framework of the new scheme presented 
here the RG equations for the fixed point are written in Appendix A and 
solved with an accuracy of the second order in 5. As a result, Eq. (A15) is 
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obtained for the co- and q-dependent contribution to the derivative 
gl(q, co). The contribution can be conveniently written as 

D(q, co)=24(n+2)g~o[I(q, co)-I(k;q=O, co)] (4.1) 

where the integral I(q, co) is determined by the equation 

I(q, co)= V 2 ~ I. h(p, col) h(k, 0)2) 
O91, 2 ~R, p 

1 

x IIu---~dyyh([p+(k+q)x]y,-co-col-co2) (4.2) 
0 

The quantity g2o at the fixed point is specified by relationship (A12), 

1 
(4.3) g2o 4(n+ 8) 

which also possesses an integral of the function h(q, co) in the form 

tP= T ~  fph(p, co) f~ dy yh(py, co) (4.4) 

Rewriting the equation for ~(q ,  co) in the form of 

gl(q, co) = [2 - t/(0, 0)] glo + D(0, 0) + [D(q, co) - D(O, co)] 

+ [D(O, co)-D(O,O)]--Go1(q, co)[tl(q, co)-tl(O,O)] (4.5) 

and choosing the function t/(q, co) in accordance with Eqs. (3.6) and (3.7), 

[D(q, co)- D(O, co)] -q (0 ,  0) G O '(q, co) 
~/(q, co) = r/(0, 0) (4.6) 

glo + Got(q, co) 

then at r/(0, 0 )=  (2d) -I  d2D/dq 2 [q=o~=o one gets 

/~ 1= lira D(0, co)-D(0,  0) =--riD (4.7) 
~o~o co dco q : ~ : o  

Thus, our task is reduced to the analysis of integrals I(q, co) and ~u 
involved in the function D(q, co). Let us mention here one more useful 
property of the function h(q, co). In accordance with the definition, one can 
write 

h(q, co) = A 2 OGo(q,c3A 2 co) A : 1 (4.8) 
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On the other hand, Gol(q, co)= f(q2, co) S-l(q2/A2), so, taking the general 
form (2.4) of the function f into account, we obtain 

Go(q, co)= A--2~--l(q2/A2 ' CO/F) S(q2/A 2) (4.9) 

Substituting (4.9) into (4.8), one can see that h(q, co) satisfies the equality 

h(q, co)= 8 - 8q-- 5 [q2Go( q, co)] A=I (4.10) 

Let us consider now the value of ~u. Using its definition (4.4) and 
Eq. (4.10), one obtains 

T 
~ ' = ~  fph(p, co) p 2 fPdpZ h(p, co) 

= - f f  ~ f h(p, co) Go(p, co) 

=r_ E f G2(p, co) 
4 o~ :p A=I 

The particular structure of the functions f(q2, co) [see (2.3a), (2.3b)], 
f(q2, co) = q2 + co(o(F, A, q2) is such that one can make the summation over 
cok = 2~zkiT explicitly, 

1 - -  S2 (O 2 OF(X) T ~  GZ(P' CO)= SZ(pZ) T ~  (p2 + CO(O) ~-x x= p2 

where v(co)= (e p~ 1) 1. Since further on we shall be interested in finite 
temperatures and low frequencies, we can set v(co)~ (rico) * and conse- 
quently 

T E G2(p, co) ~ -S2 /p  4 
(o 

At last one gets for 7 t an expression coinciding with a similar expression 
in the static case, 

1 ~? fpGZ(p) A (4.11) 
~v-  4 8A 2 =1 

It should be noted that, taking account of Eq. (4.11), the expression (4.3) 
for g2o coincides with the value of this vertex at the stable fixed point of the 
conventional approach to the static RG, which appears in the (o 4 theory in 
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the calculation of diagrams like that presented in Fig. la. (9'1~ In fact, with 
infinitesimal elimination of short-wavelength modes and an abrupt stepped 
cutoff S = 0 ( 1 - p 2 / A 2 ) ,  an integration is made over a narrow band of 
momenta in the vicinity of q/A = 1, which produces the same result. The 
coincidence of the integral (4.11) and the value g20 with the respective 
values of the one-loop approximation of the standard theory suggests the 
possibility to transform the RG equations used here in the first 
approximation into the respective one-loop equations. This transformation 
is presented in Appendix B. 

Let us analyze now the integral I(q, 00). First it should be rewritten in 
the coordinate representation 

1 

T2~-~ f d4 r ffdx dy yh(xyr, 17.01) I =  
X 

~ 0 

x h(ry, 0)2) h(r, - 0 )  - 0)1 - 0)2) eiqrxY (4.12) 

in which all further transformations are a little more compact. Then it 
is convenient first to consider the second derivative with respect to the 
vector q: 

- 7 h (  r, - 0 ) - 0 ) ~ - 0 ) 2 )  d(yr)(yr)h(yr0)2) 
Oq2 o91,2 

x f :r  d(xyr)(xyr) h(xyr, (01) e iqrxy 

The convenience of doing this becomes evident after explicitly making the 
integration over angles 5 ds in the d-dimensional space 

Oq 2 8 ~ dr2 dr2 h( r, - 0 ) - 0 ) 1 - 0 ) 2 )  
O91,2 

r 2 U 

x "| du h(u, ( 0 2 )  [ du' h(0), u ')exp[iq(u')  1/2 cos 0] 
~o Jo 

>C)< 
(a) 

Fig. 1. 
(b) 

Perturbation theory diagrams in the @4 model which relate to (a)the integral 
[Eq. (4.11)]; (b)the integral I [Eq. (4.16)]. 



310 Ivanchenko et  aL 

and the integration by parts in y dr 2, 

~q2--  8 ~ f d~r'~ du h(/,/, 0 )2) f  d/x h(b/, --09 -- 091-  ('02) 
r~l,2 

x du' h(u', c01) exp[iq(u') 1/2 cos 0] 

The integral over u in brackets is indefinite. The shift of the variable of 
summation 092 makes it possible to transform the expression in these 
brackets into 

~[h(u, 092)fdlxh(Id,-09-091-092)-~-h(u~- 09 - 09 1 - 092) f du h(/d, 092) ] 

- 20u f du h(u, co2) f du h ( u , - 0 9 - 0 9 i -  (,02) 

and perform one more integration by parts in the equation for 

c?q 2 16 ~ dr2 du 
O91,2 

x h(u, o91) exp[iq(u') m cos O]f  h(u, 092) du 

x fh(u,--09--091--092) dH 

T 2 ~ f' d4r 
-8 r Li,2JTh(r, 09,)f dF2 

x h(r, 092) fdrah(r , -09-09~-09a)  (4.13) 

Then it is necessary to investigate the structure of the integral ~ dr 2 h(r, 09). 
For this purpose let us use the general property of the function h(q, 09) 
represented by (4.11), h = -O(qZGo)/~q2 , and rewrite ~ dr 2 h(r, 09) as 

f dr2h(r, 09)= _ l  fdr2 ( o~ (rq) 2eiq . . . .  oO(qZGo) 
2 d r 2 .J dr2 fo dq2 Oq 2 

'fanfare; = 2 r 2 3o dq2 q2Go + (rq)2 e,q . . . .  o 
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Provided that x c?f(xy)fi?x = y ~?f(xy)/@, one gets 

f dr h(r, 0)) = r 2 f d4q Go(q, 0)) e iqr = r2Go(r, 0)) (4.14) 

Substitution of this result into Eq. (4.13) immediately solves the problem 
of analysis of I(q, 0)): 

021 c3 (~__~ 2 f ) 
63q2 -- 63q2 2 d4r eiqrh( r, 0) 1) Go(r, 0.)2) Go(r, -0)  -- 03 1 -- (/)2) 

o31,2 

Hence, within an accuracy of I ]q =0 one has 

T 2 
I=--~- ~_, f d4r eiqrh(r, 0)1) Go(r, 0)2) Go(r, - 0 ) - 0 ) 1 - 0 ) 2 )  

_ 1 ~3 T2 ~ f dgr eiqrGo(r, 0)x) 
24 ~?A 2 r~l,2 

x Go(r, 0)2) Go(r, - o ) - 0 ) 1 - 0 ) 2 )  A =1 (4.15) 

Our further procedure involves the routine calculation of sums over 
imaginary frequencies col. 2, which can be performed with the help of the 
spectral representation for Go(q, 0)), 

(.o~ dr2 Im Go(q, O) 
Go(q, 0)) J _o0 ~ ~ - _ ~ _ g  

where 6 = +0. Bearing in mind that the functions v(0)) appearing in the 
summation can be represented, just as before, as v ~ T/O), one gets 

I(q, 0))=lZ fk If ~ df21df22ImGo(k, f21) 
, ~2 ff~1 ,p --oc> 

Im Go(p, Q2) 
x Go(p, -~'~1-- '(~2-- 0)) (4.16) 

-(22 

(where p = k + p + q). Expression (4.16) coincides with a similar integral of 
ref. 9. In the diagram technique, this integral has the corresponding 
diagram presented in Fig. lb. Performing an integration over Q1 and Q2 in 
Eq. (4.16), taking account of the explicit form of the function Go(q, 0))= 
S(q)/(q 2 + coq)), one gets 

f s(lc) S(p) S(p) (Ic 2 + p2 + p2) 
I(q, 0)) (4.17) ok ,p (kpp) 2 k2 + pZ + p2-0)q) 

822/58/1-2-21 
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For the abrupt cutoff S(q)=O(1--q2/A2) and ~0=F -1, (4.17) coin- 
cides with the corresponding expression given in ref. 20. 

The limit of importance is co--*0. In this case, Eq. (4.17) obviously 
gives the static result for I(q, 0): I(q, O)=Sk.p S(k)S(p)S(p)/(kpp) 2. It can 
be easily proved that the respective integral I(q, 0) in the static limit has the 
form 

1 

I(q,O)=fk h(k)h(p) f f~dyyh([(q+k)x+p]y ) (4.18) 
,P 

0 

where h(q)=h(q, co= 0). Using the integral (4.18), one can calculate the 
Fisher exponent determined by Eq. (3.7), 

~ Oh(p+kx) (4.19) r / -  ,(0) = 6(n + 2) g~o ~ h(k) h(p) dx x O(p + kx) 2 
" k , p  

Equation (4.19) looks rather cumbersome and casts some doubt as to the 
universality of the obtained exponent. It has relatively arbitrary functions 
h(q) in the integrands. It can be shown, however, that the final result does 
not depend on the particular choice of the cutoff function S(q) and 
coincides with the known magnitude r/= (n+2)/2(n+ 8) 2. The proofs of 
this statement available in the literature are rather complicatedJ 21 24) In 
Appendix C a new proof based on the results obtained in this section is 
given. It also should be emphasized that the proof of the universality of 
integral (4.19) leaves the question open about the cause of the coincidence 
of ~ in different approaches and about the problem of universality of the 
corresponding integrals in the standard approach upon the replacement of 
an abrupt cutoff with an arbitrary and smooth one. Reducing the integrals 
to each other solves this problem automatically. The same is also valid for 
the integral g~, also considered in Appendix C. 

The coincidence of the integral (4.16) with the similar expression of the 
standard approach (9'1~ makes it possible, in turn, to use the expressions for 
F(co) and the related dynamical exponent z obtained within the standard 
approach. Namely: F(co) = F[-1 + 3g~0(n + 2) ln(4/3)/8~ 4 ln(ico)] and z = 
2+  1-6 ln(4/3)-  l ift  for the case of (2.3a); and F=cons t  and z = 4 - t t  for 
the case of (2.3b). These calculations are performed with the help of the 
stepped cutoff S and they leave the question open about the universality of 
the results obtained within the dynamics for a more arbitrary choice of S. 

Thus, the approach to the theory of critical phenomena presented here 
and based on the analysis of the scale equations for the correlation func- 
tions can be in equal measure successfully applied to the investigation of 
both static and dynamic properties of a substance in the vicinity of the 
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phase transition point. The established close relationship between this 
approach and other versions of the theory of critical phenomena (namely, 
between the Wilson exact functional RG on the one hand and the pertur- 
bation theory in the (TO 4 model on the other) provides much freedom in 
selecting a calculation technique. Thus, it allows one to choose the techni- 
que most suitable (from the point of view of simplicity and mathematical 
convenience) for the solution of some particular task. 

A P P E N D I X A .  F IXED P O I N T  OF THE RG E Q U A T I O N S  
IN T H E  S E C O N D  O R D E R  IN E 

The fixed point of the RG equations in the second order in ~ is deter- 
mined by the system of equations 

UkEgj {qs, coi} ] = 0 (A1) 

possessing an appropriate number of vertices g~. It can be easily checked 
that at the fixed (nontrivial) point the vertices glo and g2 have the order 
e, whereas g3 ~ e2 and other vertices gk > 3 are of higher order. Therefore, to 
an accuracy of e2 it is sufficient to consider the following three equations: 

glo = - ~ (n + 2) g2o T h(p, COp) (A2) 

e - R2{q,} -- 2glo ~ [h(q,, CO,) + (i ~ i)] 
i = 1  

xg2{qi, q,;co~,CO~}+Q2{q~,q~;coi, CO~}=O (A3) 

[2 + R3{qi}] g3{qi, q,; coi, co,} 

+ r 2 . f  h(p) S[g2(P, {qi};COp, {co~}) gz(-P,  {q~}; -cop, {co,})] = 0  
COp - p  

(a4) 

Here the function Qz{qi, co,} is determined by Eq. (24), 

i = 1  

Equation (A2) is written to an accuracy of order e, since r/(q, co) ~ g~o- For 
the following solution it is convenient to distinguish explicitly the constant 
part of the vertex g 2 = g / o + g 2  in Eq.(A3). It is determined by the 
equation 

eg2o - 8g~o gzoh(0, 0) + Qz{qi = 0, e)~ = 0} = 0 (A5) 
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The value g20 is 
verified, will be of the next order. The equation for g2 has the form 

R2{qi} g2(qi, (oi)= -[z{q~, cog} -Z{0}]  

where 

Ivanchenko et  al. 

of order ~, while the (q, co)-dependent part, as can be 

(A6) 

2 

z{qi, coi} = 2glo g2o ~ [h(qi, cog) + h(q~, cog)] - Q2 (A7) 
i ~ l  

Retaining in Eq. (A4) terms of the order of 2 2 gzo~g , one obtains the 
considerably simpler relation 

where 

[-2+R3{qg}] g3{qg, co,} = 2 H -g2o {qg, cog} (A8) 

2 3 
H{qg, cog} = 3 i~j [h(qi + qj + qj, cog + coj + coj) + (i ~ i)] 

Solutions of Eqs. (A6) and (AS) can be formally written as 

f[ dx D~{qgx, (1)i} -z{0 ,  0}] (A9) s 2=- x 

1 

g3{qg, cog} = -g~o fo dy yH{yqg, cog} (A10) 

The function (A10) determines the function Qg{qi, cog} which in turn [see 
Eq. (A7)] determines g2{q~, cog}. Thus, one can easily find that 

1 

Q2{0, 0} -- -4g~o ~ f h(p, COp) Q dy y[(n -k 8) h(py, cop)- 2(n @ 2) h(0)] 
COp P 

(All)  

and, consequently, according to Eq. (A5) one gets 

g2o=e 4(n+8)~ ,  h(p, cop) dyyh(py, cop) (A12) 

The function D(q, co) necessary to find contributions to ~(q, co) is deter- 
mined through the difference 

D(q, co) -- Qx(q, co) - g~oh(cl, co) (A13) 
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Using Eqs. (Ag) and (All), one gets 

Q~(q, co)-- -4glog2o(n+ 2)T~ o dX h(qx' co)rX J~ h(p' co) 
X ~ 

-4g2oT 2 h(k, co~)h(p, cop) dXdyy 
r k , p X 

• {(n+2)  2 h(qxy, co)+6(n+2)  

• h([p+(k+q)x]y,--co--cok--cop)}--(k,q=O) (A14) 

Substituting (A14) into (A13), one finally has 

D(q, co) = 24(n + 2) g2 o T 2 ~ f h(k, cok) h(p, cop) 
COk, P k, p 

1 

x f f ~ d y  yh([p+(k+q)x]y,--co--cok--cop)--(k,q=O) 
0 (AI5) 

The obtained expression completely determines the sought dependence of 
gl on variables q and co. 

APPENDIX  B. CONNECTION OF EXACT RG EQUATIONS WITH 
THE S T A N D A R D  PERTURBATION THEORY 
(ONE-LOOP A P P R O X I M A T I O N  ) 

In Section 4 it was established that the integral ~u [see Eq. (31)] and, 
consequently, the expression for the vertex g2o coincide with those in the 
one-loop approximation of the conventional RG approach. So it seems 
quite natural to try to reduce the RG equations from different approaches 
to each other. In the lowest order in e this will be done in this Appendix. 
For the sake of brevity, the summation over co, and the co dependence of 
fields ~o(q, co) and values h(q, co) on this variable, will be omitted. This is 
fully justified, since, first, the proper RG transformations in dynamics and 
statics coincide, and, second, formally the frequency dependence is restored 
by means of replacements 

fq ~ T~  fq; ~o(q)-~ ~o(q, co); h(q) ~ h(q, co) 

In the lowest e order the value t/in the RG equations can be omitted. 
Equations (2.11) are generated by Eq. (2.12) for variatonal derivatives 
for 
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~=fqI(gqq)(q)) ON 
6~o( q ) 

+ h(q) \&P(q) &o(-q) - &o(q----) 6q~(-q)Jl 

where the operator (d+ 2)/2 + q 8/Oq is denoted, for brevity, by gq. 
The main idea of the further transformations consists in eliminating 

the last term in (B1) giving rise to contributions to the higher order ver- 
tices (gk with a higher number k) by the low-order ones. For this purpose 
let us pass now to a new functional ~/using the transformation 

1 f, aN aN (~2) 
~ =  N- -~  a(q) fiq~(q~ 6(o(-q------~) 

where the function a(q) will be specially adjusted. The functional ~ will be 
assumed to have smallness in e and we retain only terms to the second 
order in ~ appearing after the substitution of (B2) into (B1), i.e., 

�9 ( 
fq h(q) 6(o(-q)J 
+ [(~q~O(q)) 6 6 2 

+ h(q) &o(q) 3q~(-q)] 

fpa(p) f in  ,~N f i~ 6 
x 2 3q~(p) 6q~(-p) a(q) 6q~(-q~) 6(o(q) 

• fq[(gp~O(p))~+h(p) 62~ ]} (B3) 
6q,(p) &o(- p) 

Now let us dispose of the function a(q) so as to eliminate all terms of the 
type [6~i/&o(q)] 3~/&o(-q). It can be easily proved that for this pur- 
pose a(q) should satisfy the equation (1 + q2 d/dq2)a(q)= -h(q). It should 
be noted that both in statics and in dynamics the function h(q) [-or 
h(q, co)] is connected with G o via the relation (4.10), h = -O(q2Go)/~q 2. 
The equation for a(q) has an obvious integral a(q)= Go(q). After elemen- 
tary transformations, Eq. (B3) acquires the form 

..~F = fq {(gq(p(q)) ~------~--[ - h(q) r ] 
&p(q) 6~o(q) 6q~(-q)3 

fp 62~ 62~ } (B4) 
+ h(q) Go(p) 6(o(q) 3q~(p) 6q~(-q) 6~o(-p) 
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Finally, since h(q)= A 2 OGo/c~A2tA= 1 ,  one gets the sought equation of the 
first e approximation, 

(~qqO(q)) ~ q-- "~  f~ Go(q) 

F f, Co(pt 
x [_6(p(q)bcp(_q)+ 2 

] 
&o(q) 6~p(p) 6~o(-q) & o ( - p ) j  A = 1 

(Bs) 

In the q)4 model this equation coincides with the one-loop equation appear- 
ing in the calculation of the diagram presented in Fig. 1. As mentioned 
above, the co dependence in Eq. (B5) is easily restored by means of the 
formal replacement ~q --+ TZ~ o ~q, ~o(q) -~ ~p(q, co), G(q) -+ G(q, co). Thus, 
the integral ~u containing ~ appears in the right-hand side. After the sum- 
mation [see (4.11)] this integral fully coincides with the similar integral for 
the RG in statics. 

A P P E N D I X  C. P R O V I N G  THE U N I V E R S A L I T Y  OF 
INTEGRALS qJ A N D  (~Zl/~q2)[== q=o 

One of the main hypotheses in the theory of critical phenomena is the 
statement that the critical asymptotics to do not depend on the cutoff 
method, i.e., on the choice of a particular function S(q). This statement is 
often used to justify the fact that the calculations are carried out with some 
special form of S(q) in particular S=O(1-q2/A2). Strictly speaking, 
however, it is a hypothesis yet and it still must be proved as to the univer- 
sality of each obtained result. In this Appendix this hypothesis will be 
proved with respect to the integrals ~u and (~2[/OqZlq=~o= 0 involved in the 
determination of the exponent r/. Similar proofs were specially dealt with in 
refs. 21-24. It seems to us that the proof given below in the context of this 
paper is more obvious and compact. Unfortunately, we could not get a 
similar proof of the universal character of the index z. 

Let us start with g~. Using properties of the functions h(q, co)= 
-d(Goq2)/dq 2, S(O)= 1, and S(q~  o0)--,0, one gets 

--r Z f - 2 ~ Je h(p, co) Go(p, co) 

K4 T ~  fo  dpZ d(G~ 
=--4- dp2 (aop 

K4{~[pZGo(p, co)]2} o K4S(0) K4 (C1) 
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where Kd = Sd/(27~)d; Sd is the area of the unit-radius d-dimensional sphere. 
Thus, the integral ~u is obviously universal. 

For ~21/63q2 |q=eo = o it is useful to exploit the representation 

82/ 1 
8q 2 q= ~o =o = -8 f d4r r2h(r) G2(r) (C2) 

Using now Eq. (4.14) and denoting tc(r 2) = Go r2, one has 

0)'1 q=~o I f f o  dlr $4 (4K(0))  3 (C3)  8q ~ =o - 16 dr2 dr2 g2( r2 )  dr 2 -  3- 16 

Now the only thing is to calculate ~:(0), given by 

to(O) = Ip d 2 2 = K42 Oo f o~ dP 2 dP 2dS _ K 42 S(0) = 2-K4 (C4) 

which directly proves the desired universality. 

A P P E N D I X  D 

This Appendix is intended to derive the "classical" Ginzburg-Landau 
functional from the microscopic Hamiltonian of a nonideal Bose gas, which 
is 

t?=&+/L 

. 1 ( ,  

Hi = ~ | dr dr' fi(r) V(r - r') fi(r') 
, )  

(D1) 

(D2) 

(D3) 

where ~+ and O are the field Bose operators, /5 = ~ + ~  is the particle 
density operator, and the potential V(r), for the sake of simplicity, will be 
regarded as purely repulsive, i.e., V( r )>0  (the Ginzburg-Landau 
functional for the classical gas in which, along with short-range repulsion, 
there is long-range attraction was constructed in refs. 25 and 26). 

Our task is to calculate (to be more exact, to give the representation 
in the form of the continuum integral over the c-quantity field) of the parti- 
tion function of the grand canonical ensemble 

Z =  Sp e x p [ - f l ( H o  +/t~)] (D4) 
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where /~0 =/~o-#29,  # is the chemical potential, and s ~ dr ~(r) is the 
operator of the total number of particles in the system. The partition func- 
tion (A4) can be represented in the form (27) 

where 
Z =  Sp{ [exp{-/j/~o)] d{/j)} (D5) 

~(/j) = i?~ exp - fo dr f dr dr' r r) V(r - r') ~(r', T) (D6) 

Here 27~ is the ordering operator along the imaginary time axis, 0~< 
-iT ~< -i/J, and the time dependence of operators is taken in the inter- 
action representation. 

Using the Stratonovich-Habbard transformation, one can represent 
the operator d(/j) as a functional quadrature over the c-quantity field 
O(r, T), 

d{/j) = A fj DO exp - dr J dr dr' O(r, ~) K { r -  r') O(r', r) T, 

x e x p [ - - i / j f d r O ( r , z ) ~ ( r , r ) l  (D7) 

where 

A - ' = f D O ( r , r ) e x p [ - ~ f f  dr fdrdr 'O(r ,T )K{r - r ' )O(r ' , r )  ] 

and the function K ( r - r ' )  is determined by 

f df V(r - ~) K ( f -  r') = 6(r - r') (D8) 

With the help of representation (D7), the partition function (D6) can be 
written in the form 

= A f DO exp{ -/jJut~[O] } (D9) Z 

1s fi~}f[0] = ~ dr drdr 'O(r , r )K(r-r ' )O(r ' , r )  

- In Sp {[exp(-/ j /~o)]  T~ 

x e x p [ - i ; : d r f d r O ( r , z ) ~ , r , z ) ] }  (D10) 
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In the mean field theory the equilibrium value O(r, ~) corresponds to 
the minimum of the functional (D10) and is determined by 

6Yf f .  

~O(r, ~------5 - 0 = j dr, K i t  - r') O(r', ~) 

+ i(Sp {[exp(-flI~o)] t~P(r, z) 

x exp[- i f fdz fdr 'p(r ' , z )O(r ' ,~)]})  

x exp[-i f~dzfdr 'p(r ' ,~)O(r ' ,r)]})  ~ (Dl l )  

The space-homogeneous and time-independent solution of Eq. (Dl l )  has 
the form 

If 0 o = - i  dr K(r) <<P >>o (D12) 

where ((- . . ))  denotes the quantum mechanical averaging with 

Hamiltonian fro + iOoN. It is evident that the value ((P))0 is the density of 
a noninteracting Bose gas with chemical potential #+iOo:((p))o= 
n(# + iOo T). 

The approximation ~2o=Yf[0o] determines the thermodynamic 
potential of the interacting Bose gas in the mean field approximation. The 
gas density in this approximation is 

no(u, r)=~( c~s ~ '] = 1  * 
- Op Jr -v((N))~176 T) (D13) 

With the account of relation (D13) the system pressure is expressed by 

P=Po(#+iOo, T ) = ~  drg(r) n2(u+iOo, T) (D14) 

where Po(/~ + iOo, T) is the pressure of an ideal Bose gas, and by the 
chemical potential # + iOo. 

Since our aim is to construct the Ginzburg-Landau functional for the 
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investigation of fluctuation effects, let us set O(r,r)=Oo+qO(r,r) and 
expand the functional Y{~[0] in ~o(r, ~): 

f fl AYg[ep] = ~ & d z '  drdr'ep(r,t)~o(r',z') 

x [ 6 ( z - z ' ) K ( r - r ' ) + ( ( ? ~ f i ( r , r ) ~ ( r ' , r ' ) ) ) o c ] + . . .  (D15) 

where ((.-.))oc is the connected average with Hamiltonian ~o + lOoN. 
The Fourier transform of the expression in square brackets on the 

right-hand side of Eq. (D15) determines the free propagator Gol(q, ~o), 
which constitutes a part of the functional (2.2). Our next task is to 
calculate this propagator for the model under consideration. Opening the 
average ((.-.))oc, one obtains 

G o l = V ; l  + r ~  fq, Go(q',co')Go(q'-q,  co'-(o) (D16) 

Here Vq is the Fourier transform of the particle interaction potential 

Co(q, co) = - -  d~fdre ' (  ~ qO((T~ O(r, r) 0 + (0, 0)))o 

= ( i c o  - e q )  1 

(D.17) 
eq = q2/2m - p + iOo 

and the temperature dependence is restored in the Matsubara frequencies 
o = 2~nfli. 

Performing the standard summation over frequencies in Eq. (D16), 
one gets 

Gol(q, (o) = fq V(gq,)- V(gq, q) (D18) 
ico - eq, + g,q, q 

where v(e) is the Bose-Einstein distribution function. As we consider a non- 
degenerate Bose gas, the replacement of v(e) with the Boltzmann distribu- 
tion function in the limit q ~ 0, (o--+ 0 gives 

t A3 2 T -  r - i c o  (D19) ao~(q, co)= Vq - VV---~o 

where A t =  (2m/T) 3/2 is the thermal momentum, and F 1 = VoAeZr 
6~3/2T 2. Expanding now Vq in the vicinity of q = 0  and replacing 
ca(o), q) --+ ~o(q, co) V~/2 near the transition points, one finally gets 

= 2 oo [q0(q, co)l 2 ( z + c q 2 + i o A 2 V - ' ) +  ... (D20) 
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where r = (T-Tco)/Tco, and T,.o=2F -I is the trial critical temperature; 
here 

2Vo3q 2 q=O + ArTC~ c 

Thus, for the transition under consideration the free propagator in the 
form of (2.3a) has been obtained from microscopics. 

The SE are obtained for the correlation functions of the field ~0(q, o~), 
and to investigate the dynamic phenomena one has to calculate the linear 
response function. The latter is the analytical extension from discrete 
frequencies to the real axis of the Matsubara temperature Green function. 
To conclude this Appendix, let us show that the Matsubara Green function 
is linearly connected with the correlation function used in the SE. For this 
purpose the Matsubara two-particle function is represented as 

C(r, r; r', r') 

= 1 Sp{ [-exp(- fl/~0)] T~(r ,  r) fi(r', ~') #(fl)} 

- z1Sp{exp(-fl lgI~ DO(r'r) 

xexp - -~  dr dr dr'O(r,r)K(r-r')O(r') ~O(r,r)60(r',r 

x f'~ exp - i 

Performing elementary actions, one gets 

G(r, r; r', r ') 

= -  f drK(r) O 2 - f  d~dF'K(r-e) K(r'-e')(q~(~,r)q~(i',v')} 

(D21) 
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